

BBA-003-1164001

Seat No.

M. Sc. (Sem. IV) Examination

July - 2021

Mathematics: CMT - 4001

(Linear Algebra)

Faculty Code: 003

Subject Code: 1164001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- 1) Attempt any five questions from the followings.
- 2) There are total ten questions.
- 3) Each question carries equal marks.

1 Answer the following seven:

 $7 \times 2 = 14$

- 1. Define with example: Algebra over a field.
- 2. Define with example: Homomorphism between two algebras.
- 3. Define with example: Invertible Linear Transformation.
- 4. Define with example: Minimal Polynomial.
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x_1, x_2) = (x_1, 3x_2)$.

Justify, whether 3 is a characteristic root of *T* or not?

6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x_1, x_2, x_3) = (x_3, x_2, 0)$.

Justify, whether $W = \{(0,0,z): z \in \mathbb{R}\}$ is invariant under T or not?

7. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x_1, x_2) = (0, x_1)$.

Justify, whether *T* would be nilpotent or not?

2 Answer the following seven:

 $7 \times 2 = 14$

- 1. Define with example: Cycle with respect with to a linear transformation.
- 2. Define Jordan form of a linear transformation.
- 3. Define with example: Companion matrix.
- 4. Define with example: Characteristic Polynomial of a linear transformation.
- 5. State Primary Decomposition Theorem.
- 6. Let A' denotes the transpose a matrix $A \in \mathbb{F}_n$. Justify, whether (A')' = A or not?
- 7. State Cramer's Rule.

3 Answer the following both:

 $2 \times 7 = 14$

- a) Let V be a finite dimensional vector space over \mathbb{F} and $T \in A(V)$. Prove that, T is invertible if and only if the constant term of the minimal polynomial is non-zero.
- b) Let V be a finite dimensional vector space over \mathbb{F} and $S, T \in A(V)$ with S invertible. Prove that, r(ST) = r(TS).

4 Answer the following both:

 $2 \times 7 = 14$

- a) Let V be a finite dimensional vector space over \mathbb{F} and $T \in A(V)$. Let $\lambda \in \mathbb{F}$ be a characteristic root of T. Prove that, λ is a root of a minimal polynomial of T over \mathbb{F} .
- b) Let V be an n-dimensional vector space over \mathbb{F} . Prove that, $T \in A(V)$ is invertible if and only if m(T) is has inverse in \mathbb{F}_n .

5 Answer the following both:

 $2 \times 7 = 14$

a) Let V be a finite dimensional vector space over \mathbb{F} and $T \in A(V)$.

Let W be a T-invariant subspace of V. Prove that, T induces a linear transformation \overline{T} on V/W defined by $\overline{T}(v+W) = T(v) + W$.

Also prove that, the minimal polynomial of \overline{T} divide the minimal polynomial of T.

b) Let \mathbb{F} be a subfield of a field K. Let $n \in \mathbb{N}$ and $A \in \mathbb{F}_n$. Prove that, A is invertible in \mathbb{F}_n if and only if A is invertible in K_n .

6 Answer the following both:

 $2 \times 7 = 14$

- a) Let V be an n-dimensional vector space over \mathbb{F} and $T \in A(V)$. Suppose all the characteristic roots of T lies in \mathbb{F} . Prove that, T satisfies a polynomial of degree n over \mathbb{F} .
- b) Let V be a finite dimensional vector space over \mathbb{F} . Let $T \in A(V)$ be nilpotent with index of nilpotence k. Let $v \in V$ be such that, $T^{k-1}(v) \neq 0$. Prove that, the vectors $v, T(v), \dots, T^{k-1}(v)$ are linearly independent over \mathbb{F} .

7 Answer the following both:

2 X 7 = 14

- a) State and prove, Cayley-Hamilton Theorem.
- b) Let the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{F}_3$. Prove that, A

is nilpotent and find the invariants of A.